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Abstract: In this paper, an adaptive procedure to the 

problem of synchronization and parameters identification for 

chaotic networks with time-varying delay is introduced by 

combining the adaptive control and linear feedback. Especially, 

we consider that the equations ( )ix t (for i =r+1, r+2,…, n) 

can be expressed by the former ( )ix t (for i = 1, 2,…, r), 

which is not the same as the previous equation. This approach 

is also able to track the changes in the operating parameters of 

the chaotic networks rapidly and the speed of synchronization 

and parameters estimation can be adjusted. In addition, this 

method is quite robust against the effect of slight noise and the 

estimated value of a parameter fluctuates around the correct 

value. 
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1. Introduction 

 

Chaos appears in time evolutions of some kinds of 

nonlinear equations 
[1]

. Chaotic systems intrinsically defy 

synchronization due to the evolution of a chaotic system 

sensitive dependence on its initial condition. However, 

over the past few years, the surprising phenomenon of 

synchronization between coupled chaotic systems has 

generated much interest since the pioneer work of Pecora 

and Carrol 
[2,3]

. The interest in understanding the 

synchronization characteristics of chaotic systems stems 

from its potential applications in a variety of areas, such 

as in secure communication, chemical and biological 

systems, information science, optics and so on 
[1,4–5].

 

Recently, a wide variety of approaches have been 

proposed for the synchronization of chaotic systems, 

which include PC method
[2]

, OGY method 
[3]

, scalar 

driving method, coupling control, manifold-based 

method 
[6]

, fuzzy control, impulsive control method 
[7]

, 

active control, adaptive control 
[8–13]

, and time-delay 

feedback approach 
[14]

, etc. However, the aforementioned 

approaches and many other synchronization methods are 

valid for chaotic systems only when the systems’ para- 

-meters are known. But in many practical situations, the 

values of some systems’ parameters cannot be exactly 

known a priori, and the synchronization will be 

destroyed and broken with the effects of these 

uncertainties. Therefore, this paper is devoted to the 

synchronization-based estimation of connection 

parameters by combining adaptive scheme and 

dynamical linear feedback control, provided the model is 

known. Recently, there is increasing interest in the study 

of dynamical properties of chaotic networks due to their 

potential applications in different fields such as 

combinatorial optimization, pattern recognition, signal, 

and image processing 
[15–17]

. Most of existing works 

focused on the stability analysis and periodic oscillation 

of this kind of chaotic networks. In particular, the 

introduction of delays into chaotic networks may make 

their dynamical behaviors much more complicated even 

with strange attractor 
[18]

. Recently, the chaos 

synchronization phenomenon for chaotic networks has 

drawn the attention of some researchers 
[19,20]

. In above 

Refs. the synchronization schemes are proposed based on 

exactly knowing the concrete values of the connection 

weight matrices, and there is an assumption that the 

parameters in all coupled chaotic networks are identical. 

Some synchronization-based strategies have been 

devised to estimate all unknown parameters of the master 

chaotic system. In Refs. 
[10, 21–25]

, some schemes such as 

auto-synchronization, random optimization, error 

minimization and geometric control method have been 

developed to recover unknown parameter values of a 

given model. By combining adaptive scheme and 
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dynamical linear feedback, an analytical scheme was 

proposed for estimating all unknown parameters from 

time series in Ref. 
[26-27]

, based on the invariance 

principle of differential equations. Moreover, Huang has 

given a more detailed proof and some interesting 

remarks on the adaptive-feedback control algorithm 
[28]

. 

Some other authors have also used synchronization to 

estimate unknown parameters 
[29-32, 34]

. However, the 

parameters estimation for delayed chaotic systems has 

not been explicitly considered and studied.  

Motivated by the above discussions, in this paper, we 

consider the problem of parameters identification for 

delayed chaotic networks. we extend the method 

proposed in Refs. 
[29,30]

 to the chaotic networks with 

time-varying delay and show that this method is also 

effective in this case. In this paper, based on the 

invariance principle of functional differential equations

，a dynamical feedback process is adopted, which is 

quite different from conventional feedback scheme. The 

feedback term vanishes once the synchronization and 

parameters identification have been achieved 

successfully.  

This paper is organized as follows. In Section 2, the 

chaotic network model, and some necessary definition, 

hypotheses are given. In Section 3, by combining the 

dynamical feedback control and adaptive control, the 

synchronization-based scheme for parameters 

identification in chaotic networks with time-varying 

delay is described. Some numerical examples are given 

to verify the effectiveness of described parameter 

estimation scheme in Section 4. We conclude the paper 

in Section 5. 

2. Chaotic Networks Model and Preliminaries 

In this section, we consider the following chaotic network: 

1 1

1

( ) ( ( )) ( ( )) ( ) 1,2, ,

( ) ( ( )) ( ) 1, 2, ,

r r

i i i ij j j ij j

j j

n

i i r ij j

j r

x t f x t a g x t b x t i r

x t k x t c x t i r r n

 
 

 


    



     


 



                (1) 

Or in a compact form 

( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( )

r r r r

n r r n r

x t f x t Ag x t Bx t

x t K x t Cx t

 

 

   


 

                              (2) 

where ( )( 1,2, )ix t i n  denotes the state variable of the chaotic system, 1 2( ) ( ( ), ( ), ( )) ,T

r rx t x t x t x t r is an 

integer and 1 , ( ) 0.r n t    Functions ( )if   and ( ) :ig R R  are continuous, 

and (0) (0) 0.i if g  0   is a constant, ( ) [ , ]r

ik C R R  and 

(0) 0.ik  ( ) , ( )ij r r ij r rA a B b   and ( ) ( )( )ij n r n rC c    are real matrixes and ijc is negative constant, which 

denote the strength of neuron interconnections. 

Throughout the paper, we have the following three assumptions: 

1( )S  There exist nonnegative iL  and ( 1,2, )iL i r  such that  

( ) ( ) ,i i if x f y L x y    ( ) ( ) ,i i ig x g y L x y    

For , .x y R   and let .
1 1
max , maxi i

i r i r
L L L L

   
   
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2( )S  ( )t is a differential function with 0 ( ) 1t  . Clearly, this assumption is certainly ensured if the 

transmission delay ( )t  is a constant. 

3( )S For 
1 2( , , ) ,T r

rx x x x R x   denotes the norm of x defined by 
1

2( ) .Tx x x  For 

,r rQ R Q  indicates the norm of Q induced by
1

2
max( ( ))TQ Q Q .  

Lemma 1. [33] For any vector x, yR
n
, and positive definite QR

n×n
, the following matrix inequality holds: 

12 .T T Tx y x Qx y Q y   

3. Description of the Parameters Identification Scheme 

In order to observe the synchronization behavior of system (1), we introduce another chaotic network which is the 

response system of the drive system (1) . The behavior of the response system depends on the behavior of the drive 

system, but the drive system is not influenced by the response system.  

1 1

1

ˆˆ( ) ( ( )) ( ( )) ( ) ( ) 1,2, ,

ˆ ˆ( ) ( ( )) ( ) 1, 2, ,

r r

i i i ij j j ij j i

j j

n

i i r ij j

j r

y t f y t a g y t b y t u t i r

y t k y t c y t i r r n

 
 

 


     



     


 



              (3) 

or in a compact form 

ˆ ˆ( ) ( ( )) ( ( )) ( ) ( )

ˆ( ) ( ( )) ( )

r r r r r

n r r n r

y t f y t Ag y t By t u t

y t K y t Cy t

 

 

     


 

                             (4) 

where ( )( 1,2, )iy t i n  denotes the state variable of the response system, ( ) ( )i i iu t e t  , 

2( )i i ie t    indicates the external control input that will be appropriately designed for a control objective, and 

1 2( ) ( ( ), ( ), ( )) .T

r ry t y t y t y t   

Let ( ) ( ) ( ),i i ie t x t y t   the error dynamical system of (1) and (3) is 

     1 1 1 1

1 1

( ) ( ( )) ( ( )) ( ( )) ( ) ( ) ( ) 1,2, ,

( ) ( ( )) ( ) ( ) 1, 2, ,

r r r r

i i i ij j j ij j j ij j ij j i

j j j j

n n

i i r ij j ij j

j r j r

e t F e t a G e t a g y t b e t b y t u t i r

e t K e t c e t c y t i r r n

   
   

   


        



      


   

 

    (5) 

where ( ( )) ( ( )) ( ( )), ( ( )) ( ( )) ( ( )),i i i i i i j i j j j jF e t f x t f y t G e t g x t g y t          

( ( )) ( ( )) ( ( )).i r i r i rK e t k x t k y t    

Model (5) can be rewritten as the following matrix form 
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( ) ( ( )) ( ( )) ( ( )) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

r r r r r r r

n r r n r n r

e t F e t AG e t Ag y t Be t By t e t

e t K e t Ce t Cy t

    

  

         


  

            (6) 

1 2( , , )T r

r R     are the updated feedback gain; and the mark  is defined 

as
1 1 2 2( ) ( ( ), ( ), ( ))T

r r re t e t e t e t        . 

where 
1 2( ) ( ( ), ( ), ( )) ,T

r re t e t e t e t
1 2( ) ( ( ), ( ), ( )) ,T

n r r r ne t e t e t e t    

1 1 2 2( ( )) ( ( ( )), ( ( )), ( ( ))) ,T

r r rF e t F e t F e t F e t  

1 1 2 2( ( )) ( ( ( )), ( ( )), ( ( ))) ,T

r r rG e t G e t G e t G e t        1 2( ( )) ( ( ( )), ( ( )), ( ( ))) .T

r r r r r n rK e t K e t K e t K e t   

Theorem 1. Under the assumptions 1( )S ， 2( )S and 3( )S , the dynamical feedback strength 

1 2( , , )T

r    and the estimated parameters , ,A B and C are adapted according to the following updated law, 

respectively,
2( ),i i ie t    1,2, , ,i r  and  

 

( ) ( ( )) , 1,2,

( ) ( ) , 1,2,

( ) ( ) , 1, 2,

ij ij i j j

ij ij i i

ij ij i i

a e t g y t i j r

b e t y t i j r

c e t y t i j r r n

 





    



 


    

                               (7) 

where 0, 0, 0( 1,2 )ij ij i r      and 0( 1, 2, )ij i r r n      are arbitrary constants, respectively, 

then the controlled response chaotic network (4), and satisfies the following condition. 

ˆlim ( ) lim 0i ij ij
t t

e t c c
 

      , 1, 2 ,i j r r n   . 

ˆˆlim ( ) lim lim 0i ij ij ij ij
t t t

e t a a b b
  

       , 1, 2 ,i j r  

Proof. Let ˆ ˆ,A A A C C C    and ˆB B B   be the estimation errors of the parameters ,A C  and 

,B and subtracting Eq. (2.2) from (3.2). We can yield the error dynamical system as follows: 

( ) ( ( )) ( ( )) ( ( )) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

r r r r r r r

n r r n r n r

e t F e t AG e t Ag y t Be t By t e t

e t K e t Ce t Cy t

    

  

         


  

            (8) 

1 2( , , )T r

r R     are the updated feedback gain; and the mark  is defined 

as 1 1 2 2( ) ( ( ), ( ), ( ))T

r r re t e t e t e t         

We design the following Lyapunov function: 
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2 2 2

1 1 1 1 1

2

1 1

1 1 1 1 1 1
( ( )) ( ) ( ) ( ) ( )

2 2 2

1 1 1
( ( )) ( ( ))

2 2(1 )

r r r r r
T

i i i ij ij

i i i j ji ij ij

n n t
T

ij
t

i r j r ij

V e t e t e t l a b

c g e s g e s ds



  

 

    


   

    

 


    

  

                (9) 

where l is a constant to be determined. 

Calculating the derivative of (9) along the trajectories of (8) , we have 

1 1 1 1 1 1 1 1

( ( )) ( ) ( ) ( )

1 1
( ( )) ( ( )) ( ( )) ( ( ))

2(1 ) 2(1 )

r r r r r r n n
T

i i i i ij ij ij ij ij ij

i i i j i j i r j r

T T

V e t e t e t l a a b b c c

g e t g e t g e t g e t

 


 

 

         

     


   

 

     
  

      

2

1 1 1

1 1

( )[ ( ( )) ( ( )) ( ( )) ( ) ( ) ( )]

( )[ ( ( )) ( ) ( )] ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

T

r r r r r r r

r r r
T

n r r n r n r i i ij i j j

i i j

n n

ij i j ij i j

i r j r

e t F e t AG e t Ag y t Be t By t e t

e t K e t Ce t Cy t l e t a e t g y t

b e t y t c e t y t

    

 



  

  

   

        

      

  

 

 
1 1

2

1

1 1
( ( )) ( ( )) ( ( )) ( ( ))

2(1 ) 2(1 )

( )[ ( ( )) ( ( )) ( )] ( )[ ( ( )) ( )]

1 1
( ) ( ( )) ( ( )) ( ( )) ( ( ))

2(1 ) 2(1 )

r r
T T

i j

T T

r r r r n r r n r

r
T T

i

i

g e t g e t g e t g e t

e t F e t AG e t Be t e t K e t Ce t

le t g e t g e t g e t g e t


 

 

 


 

 

 

 




  

 

     


     

 





                     

According to the properties of (S1) and (S2), then we can get: 

2 2 2 2

1 1

( ( )) ( ( )) ( ( )) ( ) ( ) ( )
r r

T T

r r i i i i r r

i i

G e t G e t G e t L e t L e t e t     
 

           

2 2( ( )) ( ) ( )T

r r rF e t L e t e t , 
1 1

( ( )) ( ( )) 0,
2(1 ) 2

Tg e t g e t


 



   


 

2 2 2 2

1 1

( ( )) ( ( )) ( ( )) ( ) ( ) ( )
r r

T T

i i i i r r

i i

g e t g e t g e t L e t L e t e t
 

     

and by lemma 1, we can obtain 

1

1 1

1

2 2

1 1
( ) ( ( )) ( ) ( ) ( ) ( )

2 2

1 1
( ) ( ( )) ( ) ( ) ( ) ( )

2 2

T T T

r r r r r r

T T T

n r r n r n r r r

e t AG e t e t AQ Le t e t AQ Le t

e t K e t e t KQ e t e t KQ e t

  



  

    

 

 

As a tool of deriving a less conservative stability criterion, we add the following one zero equation to be chosen as: 

1 ( ) [ ( ) ( )] 0T

n r r rl e t e t e t        
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and by lemma 1, we also have 
1

3 32 ( ) ( ) ( ) ( ) ( ) ( )T T T

n r r n r n r r re t e t e t Q e t e t Q e t  

        

Thus, we will get 

2 1 1

2 1

2 12
1

1

1 3 1 3 1

1
( ) ( )[ ( (1 ) )] ( )

2

1
( )( ) ( ) ( )( ) ( )

2 2

( ) ( ) ( ) ( ) ( ) ( )

T

r r

T T

n r n r r r

T T T

n r n r r r n r r

V t e t L B l L KQ AQ L e t

KQ
e t C e t e t L AQ e t

l e t Q e t l e t Q e t l e t e t

 

 

  

 



 



  

      

      

     

 

( ) ( ) 0T t Q t    

where ( ) ( ( ), ( ), ( ))T T T T

r n r rt e t e t e t   ,  

1

2 1

3

0 0

0 0

0 0

rQ l I

 
 

    
  

 

2 1 1

1 2 1

2 1 12
2 1 3 3 1 1 3

1
[ ( (1 ) )]

2

1
( ) , ( )

2 2

r

r r

L B l L KQ AQ L I

KQ
l Q C I L AQ l Q I

   

 

       

        

 

Qi, (i=1,2,3) is positive matrix. 

The constant l and l1 can be properly chosen to make ( ) 0V t   

Therefore, based on the lyapunov stability theory, the errors vector ( ) 0e t  , as 0t  . Then the theorem 1 has 

been proofed. 

It is obvious that   ( ( )) | 0 ( ) 0 .M V e t e t     Therefore the set ˆ{ ( ) 0, ,E e t C C    

0
ˆ ˆ, , }A A B B      is the largest invariant set contained in M for system (8). In fact, if one of the following 

equalities cannot hold: ˆ ˆ ˆ, , ,C C A A B B    then ( ) 0e t   can not be a fixed point of Eq. (8) at all, i.e., one cannot 

conclude that the solution ( )e t  is equal to 0 for 0t   when the initial values ( ) 0e t  . So according to the invariant 

principle of functional differential equations , starting with arbitrary initial values of Eq. (8), the trajectory converges 

asymptotically to the set E  , i.e., ( ) 0e t  , ˆ ˆ,C C A A  and ˆ ,B B as t  .This indicates that the unknown 

parameters ,C A and B can be successfully estimated using updated laws (5) and (6), and synchronization is achieved 

at the same time. This ends the proof.  
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In Theorem 1, we can note that the variable feedback strength i is automatically adapted to a suitable strength 

depending on the initial values for the synchronization of chaotic networks, which is significantly different from the 

usual linear feedback. Whereas, by using ordinary linear feedback scheme with constant feedback strength, the 

unknown parameters can also be estimated with certain updated laws. In the following, a corollary will be given to 

show the fact. 

For simplicity, we assume that all notations are the same as those mentioned before. 

Corollary 1. Under the assumptions 1 2( ), ( )S S and 3( )S , the fixed feedback strength 1 2( , , , )T

r    is 

large enough and the estimated parameters ˆ ˆ, ,C A and B̂  are adapted according to the updated law (7), then the 

controlled response chaotic network (3) is synchronized with the drive network (1), and satisfies the following 

condition: 

ˆˆlim ( ) lim lim 0i ij ij ij ij
t t t

e t a a b b
  

       , 1, 2 ,i j r  

ˆlim ( ) lim 0i ij ij
t t

e t c c
 

      , 1, 2 ,i j r r n   . 

Proof. By constructing another Lyapunov function: 

2 2 2

1 1 1 1 1 1

1 1 1 1 1 1
( ( )) ( ) ( ) ( )

2 2 2

1
( ( )) ( ( ))

2(1 )

r r r r n n
T

i i ij ij ij

i i j j i r j rij ij ij

t
T

t

V e t e t e t a b c

g e s g e s ds


  



       



   




     



                      (11) 

This proof is similar to the proof of Theorem 1, we can easily derive the result. Its proof is straightforward and hence 

omitted. 

Remark 1 The scheme described in this paper can be used to identify the parameters of chaotic systems but not 

stable systems, because for two stable systems with identical equilibrium point, synchronization can be easily obtained 

even with completely different parameters and structures. However, as stated in Ref. [30] , the analysis of the results 

should be based on the LaSalle invariant principle, since the Lyapunov direct method can only guarantee the stability in 

the sense of Lyapunov but cannot guarantee asymptotic stability. 

Remark 2 In practice, the linear feedback controller with large enough strength in Corollary 1 is not realizable. 

Although appropriate feedback strength can be ascertained by certain calculations for concrete dynamical systems, its 

value is different for nonidentical systems. Whereas, the feedback strength of different systems can be automatically 

enhanced to the required value for the synchronization of drive and response systems in Theorem 1. 
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Remark 3 Some sufficiently large adaptive gains 

, , ( , 1,2, , )i ij ij i j r    and ( , 1, , )ij i j r n    would lead to fast synchronization and quick parameters 

identification, while for sufficiently small adaptive gains, the time to achieve synchronization and parameters estimation 

may be quite long. 

4. An example 

In this section, we give a numerical example to demonstrate the effectiveness of our results. 

Considering the following system: 

2 2

1 1

3 3 2 3

( ) ( ( )) ( ( )) ( ) 1,2,

( ) ( ( )) ( ),

i i i ij j j ij j

j j

x t f x t a g x t b x t i

x t k x t Cx t

 
 


    


  

                     (12) 

where ( ( )) tanh( ( )), ( ( )) tanh( ( )), 1,2.i i i i i if x t x t g x t x t i       

11 12 11 12

21 22 21 22

1 1

1 04 20
, ,

1 1 0 1

20 10

a a b b
A B

a a b b

 
      

         
       
 

3 2 11, ( ( )) ( ), 1C k x t x t     and 1.   The system 

satisfies assumption 1S with 1, 1,2.i iL L L L i     The initial condition 

1 2 3( ( ), ( ), ( )) (0.2,0.1,0.3) ,T Tx t x t x t  for [ 1,0]t   

  The response system of network (3.1) is  

2 2

1 1

3 2 3

ˆˆ( ) ( ( )) ( ( )) ( ) ( ) 1,2,

ˆ( ) ( ( )) ( ).

i i i ij j j ij j i

j j

i

y t f y t a g y t b y t u t i

y t k y t Cy t

 
 


     




 

 
          (13) 

where ( ( )) tanh( ( )), ( ( )) tanh( ( )), 1,2.i i i i i if x t x t g x t x t i       

11 12 11 12

21 22 21 22

1 3
ˆ ˆˆ ˆ 1 04 20ˆ ˆ, ,
ˆ ˆˆ ˆ 3 3 0 1

20 10

a a b b
A B

a a b b

 
      

                
 

3 2 11, ( ( )) ( ), 1C k x t x t      and 1.   The 

system satisfies assumption 1S with 1, 1,2.i iL L L L i     The initial condition 

1 2 3( ( ), ( ), ( )) (0.4,0.2,0.6) ,T Ty t y t y t  for [ 1,0]t  ;  

ˆˆ(0) (0) (0) 0, 1,2,i ii iia b i      and parameters update gain 10,ij  . 10,( , 1,2),ij i j    33 10  . Let 

( ) ( ) ( ),i i ie t x t y t   the error dynamical system of (12) and (13) is 
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2 2 2 2

1 1 1 1

3 3 2 3 3

( ) ( ( )) ( ( )) ( ( )) ( ) ( ) ( ) 1,2,

( ) ( ( )) ( ) ( )

i i i ij j j ij j j ij j ij j i

j j j j

e t F e t a G e t a g y t b e t b y t u t i

e t K e t Ce t Cy t

   
   


        




  

              (14) 

where ( ( )) ( ( )) ( ( )), ( ( )) ( ( )) ( ( )),i i i i i i j i j j j jF e t f x t f y t G e t g x t g y t         1,2,i   

3 3 2 3 2( ( )) ( ( )) ( ( )),rK e t k x t k y t   and 
2 1 2( ) ( ( ), ( )) .Te t e t e t  

5. Conclusion 

In summary, we have shown that a combination of 

synchronization based on dynamical feedback with an 

adaptive evolution for parameters unknown to the 

responser, enables the estimation of the unknown 

parameters for uncertain delayed chaotic network. In 

comparison with previous methods, time-delay is taken 

into account in this simple, analytical and systematic 

synchronization-based parameters identification scheme. 

In addition, it is quite robust against the effect of noise, 

and it is also able to rapidly track changes in the 

operating parameters of the experimental chaotic 

network. We also believe that this approach can be easily 

generalized to the case of other continuous and discrete 

time-delayed chaotic networks, and also the case of other 

chaotic dynamical systems with delay. 
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